https://www.gravatar.com/avatar/dfba7b9af4258f14b883b676b32bf3db?s=240&d=mp

爱宝儿

游戏开发及物联网大数据集群维护及部署开发,数据存储及相关设计,大数据、ETL、Flink、kafka,hadoop框架等多种技术开>发技术。涵盖语言涉及Java、Go、Python、C、C#等。

仅供学习参考

flink 安装

../../images/weixin_public.png

Flink Standalone Cluster

一、部署模式

Flink 支持使用多种部署模式来满足不同规模应用的需求,常见的有单机模式,Standalone Cluster 模式,同时 Flink 也支持部署在其他第三方平台上,如 YARN,Mesos,Docker,Kubernetes 等。以下主要介绍其单机模式和 Standalone Cluster 模式的部署。

flink 读写 mysql

../../images/weixin_public.png

  1. 写在前面 Flink被誉为第四代大数据计算引擎组件,即可以用作基于离线分布式计算,也可以应用于实时计算。Flink的核心是转化为流进行计算。Flink三个核心:Source,Transformation,Sink。其中Source即为Flink计算的数据源,Transformation即为进行分布式流式计算的算子,也是计算的核心,Sink即为计算后的数据输出端。Flink Source原生支持包括Kafka,ES,RabbitMQ等一些通用的消息队列组件或基于文本的高性能非关系型数据库。而Flink Sink写原生也只支持类似Redis,Kafka,ES,RabbitMQ等一些通用的消息队列组件或基于文本的高性能非关系型数据库。而对于写入关系型数据库或Flink不支持的组件中,需要借助RichSourceFunction去实现,但这部分性能是比原生的差些,虽然Flink不建议这么做,但在大数据处理过程中,由于业务或技术架构的复杂性,有些特定的场景还是需要这样做,本篇博客就是介绍如何通过Flink RichSourceFunction来写关系型数据库,这里以写mysql为例。